

SQL Server Cloned Databases and Containers

SQL Server cloned databases support delivery of large, writable SQL Server environments, in seconds,

with minimal storage requirements. A companion article describes the use of smaller databases run in

the container’s private file system, see Getting Started with SQL Server containers and in-container

databases. This article is focused on Windows based SQL Server cloning. Please see separate articles

for details in working with Storage Array snapshots.

SQL Server clones are based on Windows Virtual Hard Drives (VHD), and support creation of

“differencing disks” which are writable “cloned” database environments. The VHD Is created with

databases defined by a Dockerfile (a plain text configuration file), using Full and Differential backups, or

snapshots, and SQL Server scripts. The VHD is a full byte copy of the data, and is included in the SQL

Server image. Clones are created from the parent VHD, and mounted to either SQL Server containers or

instances.

Refer to https://windocks.com/lps/sqlall#share for details on Windocks use with network file shares.

Database clones are created in seconds, occupy <40 MB, and are writable. Storage requirement for

each clone grows dynamically using a Copy on Write design. Clones share read-only access to the

parent VHD, and are well suited for Development and Test use, but are not recommended for

performance and database stress testing.

SQL Server clone images are defined with a Dockerfile that includes one or more SETUPCLONING

commands that build the VHD either on the Windocks host or network based file share, and normally

includes RUN TargetAttach with details defining the delivery target. The default Windocks targets are

local SQL Server containers, so the dockerfile below takes a simplified form. SQL Server scripts can also

https://windocks.com/lps/sqlall#share

be applied during the image build. The example below is located in the \windocks\samples directory.

Network located files would use a universal network path.

The dockerfile shown is built with the Docker command:

>docker build -t <imagename> c:\windocks\samples\testfastclonefromfullbackup

Build a Clonable SQL Server image using the web UI

Open a Firefox or Chrome browser on the Windocks host, and direct the browser to localhost. Once the

Windocks web UI resolves enter the local loopback address: 127.0.0.1 in the Windocks Server IP

address box, and select “Get.” Remote clients can access the server (if firewalls are properly

configured) using the Windocks server IP.

To build a SQL Server image click the “choose files” tool and navigate to the Dockerfile and scripts

(\windocks\samples\testfastclonefromfullbackup). Highlight the dockerfile and script, right-click and

“select,” enter an image name and “build.” The Dockerfile and scripts are copied to the Windocks

service for execution. The SETUPCLONING commands are executed on the host, and create the VHD on

the host or on a network attached file share alongside the backup files.

Images can include scores of databases, with each included in the Dockerfile. Building the image takes

time normally associated with restoring the backup, as the image is a full byte copy of the database.

On completion the UI updates to show the new image. Clonable images support delivery to SQL Server

instances or containers, based on the Dockerfile. In the Dockerfile above the default target are local

SQL Server containers. Assign a container name, and optional port and SQL sa password. The database

selector tool allows for delivery of a subset of the image (leave blank for delivery of the complete

image). Selecting the “Deliver” button initiates the delivery.

New containers and clones are delivered in seconds, regardless of the VHD size. Starting the container

attaches the cloned databases. Remote clients use the host IP address (port separated by a comma),

and the SQL sa credentials to access.

Using the Web UI to create updated SQL Server images:

Images that include cloned databases are updated with Differential backups, or scripts, through another

image build. In this case we use a Differential backup that is included in the \windocks\dbbackups

folder.

The update is applied to the parent image (newsql in our example), and applies a differential backup

with the SETUPCLONING DIFF command. SQL Server scripts are copied into the container during the

build. Any files that need to be copied are located in the same folder as the Dockerfile. Note: image

names are case sensitive!

Updated images based on backups depends on the Full backup parent image, and becomes another full

byte copy of the environment. Updated images can be deleted and replaced, but require access to the

original parent image built from the Full backup. To build the updated image using the web UI, select

the “choose files” tool and navigate to the Dockerfile and script, highlight both files, right-click and

“select.” Assign a name to the image, and click “create.”

Working with the Command Line

The docker client on the Windocks host is included in the system path, and is available via a standard

command prompt window or PowerShell on any directory path. Additional Windows clients can be

copied from the \windocks\client directory and installed on other machines.

The Windocks CLI supports standard Docker commands. When working from a remote client, the syntax

takes on an added complexity, and requires the host firewall to be configured to allow inbound traffic on

ports 10000 – 10200, 2375, and SQL Server port 1433.

>docker -H tcp://ip.address.of.host:2375 images Remote client call for >docker images

Docker commands used locally on the Windocks host use the simpler syntax shown below:

>docker images Presents a list of available images on the host

>docker run -d <image> Creates a running container based on the image

>docker build -t <imagename> <dockerfile> Builds an image and is the required command to

Build an image with clonable databases.

>docker ps Lists containers on the host, their ports, and state.

>docker create <image> Creates a container from the image in a stopped state

>docker start <containerid> Starts the container (can use the first 2-3 digits)

>docker stop <containerid> Stops the container (can use the first 2-3 digits)

>docker rm <containerid> Deletes the container (can use the first 2-3 digits)

>docker rmi <imagename> Deletes the image, and requires the full image name

Refer to the Windocks Command Line Reference for a more complete review of Dockerfile commands

and options.

Below the docker client is run locally on the Windocks host. The >docker images command confirms the

daemon is running, and the SQL Server 2014 image is available. We build an image assigning the image

name of “clone” (>docker build -t clone \path\to\dockerfile). Disregard the client return string when

building clonable images, and confirm the image availability via the >docker images command.

Containers with the clone environment are delivered with a >docker run -d <image>. In the example a

port is assigned at 10050, a container name of “pauls,” and the return string includes the containerID,

with the port and SQL sa credentials.

The container is accessible via SQL Management Studio and other tools, for remote access use the SQL

sa credentials (use either the local loopback address, with comma separator: 127.0.0.1,10050 or the

machine IP address,port).

To update the image, build a new image including a SQL Server change script to the Full backup. Or,

apply a Differential backup with or without a script. In the example below the image refers to the

parent VHD (clone) that is updated with a differential backup, and includes the same data masking

scripts used earlier.

The build uses the SETUPCLONING DIFF command. The container delivered below is from the source

clone image, and can be disregarded. The newclone image is confirmed with a >docker images

command.

SQL Server containers with Cloned databases

The processes outlined in this article are ideal for delivery of Dev and Test environments of any size.

Each container is delivered in approximately 30 seconds, irrespective of the size of the image, is

writable, and only occupies <40 MB on delivery. A team can work with scores of identical environments

on a single shared server, and save hours each week in VM maintenance (and on costs of VM

infrastructure). Containers are created quickly, and is ideal for short-lived instances needed for Dev and

Test. The web UI provides Developers an easy to use self-service environment.

An additional advantage is that the cloned databases can be used with conventional SQL Server

instances and Microsoft SQL Server containers. So, Windocks is both a container engine as well as

general purpose SQL Server cloning solution.

